If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2+20w-3=0
a = 5; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·5·(-3)
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{115}}{2*5}=\frac{-20-2\sqrt{115}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{115}}{2*5}=\frac{-20+2\sqrt{115}}{10} $
| 18=w/2 | | 4x+27=-8(1-x)-4x | | 6x-6x-3=-32 | | 8x-(3-8x)=19+5x | | -4x-5(x+5)=-97 | | 3(-2x+15)=-6(x+1) | | 1/9g=58 | | 5x/6=4/5 | | 6x+4x=34 | | -10(3x+5)=110 | | 3(-2x+15)=6x-6 | | 8+2k-5=-5k+4K-3 | | 4(-3x+2)+3x=64-x | | -6x+5-4x=13-8x | | 4x20+30=100 | | 6-3x+4x=-7x+5x | | 4(-3x+2)+3x=64=x | | 1-5n=9-6n | | -24-12n=-72 | | 3n+1=-14+6n | | v+1.7=8.23 | | 16=k÷2-7 | | -6=2/3x-2 | | 14+x=5x−10 | | (6x-7)=(2x)+(103-x) | | u+4.85=9.42 | | 3x-3=-2+7 | | r-21=14 | | y-2.71=6.9 | | -6(-8x+17)=-6 | | 50x=2x | | 8x-8+8x=3x+60-4x |